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Abstract

We extend and generalize the result of Kalton and Swanson (Z; is a symplectic Banach
space with no Lagrangian subspace) by showing that all higher order Rochgberg spaces
SR are symplectic Banach spaces with no Lagrangian subspaces. The nontrivial symplectic
structure on Rochberg spaces of even order is the one induced by the natural duality; while
the nontrivial symplectic structure on Rochberg spaces of odd order requires perturbation
with a complex structure. We will also study symplectic structures on general Banach spaces
and, motivated by the unexpected appearance of complex structures, we introduce and study
almost symplectic structures.

Keywords Symplectic Banach space - Symplectic operator - Rochberg spaces -
Kalton—Peck space - Hilbert space

Mathematics Subject Classification Primary 46B20 - 46B10; Secondary 46M18 - 46B70

1 Introduction

Areal Banach space X is said to be symplectic if there is a continuous alternating bilinear map
o : X x X — R such that the induced map L,, : X — X™* given by L, (x)(y) = w(x, y)is
an isomorphism onto. A symplectic Banach space is necessarily isomorphic to its dual and
reflexive (see Lemma 2.2). During the decade of 1970 several authors drew the attention to
the importance of the study of symplectic forms on Banach spaces and, more broadly, on
Banach manifolds. For instance, in the proof of Weinstein [28] of an infinite dimensional
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version of the classical Darboux theorem for symplectic geometry, or in the Hamiltonian
formulation of infinite dimensional mechanics due to Chernoff and Marsden [14]. See also
Swanson [25, 26] for various results about symplectic structures on Banach spaces.

A motivation for this work has been the negative solution given by Kalton and Swanson
[20] to the question raised by Weinstein [28] of whether every infinite dimensional symplectic
Banach space is trivial. A symplectic Banach space (X, w) is said trivial if there exists a
reflexive Banach space Y and an isomorphism 7 : X — Y & Y™ such that w(x, y) =
Qy(Tx, Ty) for every x, y € X, where

Qrl(z, 2, (w, w")] = w*(2) — 2" (w).

In this case, T~ (Y x {0}) is, according to Definition 2.6, a Lagrangian subspace of (X, w).
Kalton and Swanson show that the celebrated Kalton—Peck space Z, (see [19]) is a symplec-
tic space with no Lagrangian subspaces. In this paper we will consider the sequence of higher
order Rochberg spaces R™ [23] obtained from the scale of ¢ p spaces, which can be con-
sidered as generalizations of both ¢, and Z; since R = ¢, and R® = Z,. We will show
that all these spaces )" are symplectic and contain no (infinite dimensional) Lagrangian
subspaces; in other words, they admit a nontrivial symplectic structure. A remarkable point
is that while the nontrivial symplectic structure on even spaces R>") is the one induced by
the natural duality; the nontrivial symplectic structure on the odd spaces R?"+1) requires to
modify the natural duality structure with a complex structure.

A second motivation for this work is to clarify the connection between symplectic and
complex structures on Banach spaces. Recall that given a real Banach space X, a linear and
bounded operator J : X — X is called a complex structure on X if J> = —Id. In this case,
the operator J induces a C-linear structure on X in the form ix = J(x). In the Hilbert space
setting there is a correspondence between symplectic structures and complex structures since
Weinstein [28, Prop. 5.1] proved that every symplectic structure on a Hilbert space H has the
form w(x, y) = (J(x), y), for some complex structure J and an equivalent inner product on
‘H. The argument of Weinstein actually shows that every symplectic structure on a real Hilbert
space is trivial. This correspondence is no longer valid in general (say, non-reflexive spaces
may admit complex structures), but still some properties of complex structures can be studied
in the context of symplectic structures. Section 8 is devoted to the study of perturbations of
symplectic structures by strictly singular operators and extensions of symplectic structures
on hyperplanes following the techniques of Ferenczi [15] and Ferenczi and Galego [16] about
complex structures. We also prove an analogous result for symplectic structures to those of
[9] for complex structures: no symplectic structure on £, can be extended to a bilinear form
on a hyperplane H of Z, containing it.

2 Background

Definition 2.1 Given a real Banach space X, a symplectic form on X is a bilinear map
o : X x X — Rsatisfying the following conditions:

(1) wis continuous: there exists K > 0 such that |w(x, y)| < K||x||||y| forevery x,y € X.

(2) wisalternating: w(x,y) = —w(y, x) forall x, y € X.

(3) The induced map L, : X — X* given by L, (x)(y) = w(x, y) is an isomorphism of X
onto X*.
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In this case, the pair (X, ), where X is a Banach space and w is a symplectic form on X,
is called a symplectic Banach space. We say that X is symplectic if there exists a symplectic
form w on X.

The following result is from the pioneering work of Kalton and Swanson [20]

Lemma 2.2 A continuous alternating bilinear map w on a real Banach space X is symplectic
if and only if X is reflexive and L, : X — X* is an isomorphism into.

We include the proof for the sake of completeness:

Proof 1f (X, w) is symplectic, then L} : X** — X* is also an isomorphism onto and if
x € X € X* then L} (x) = —L,(x). So X = X** in the canonical embedding. Assume
that X is reflexive and that L, : X — X* is an isomorphism into. Suppose that there exists
f € X*\Im(L,). By the Hahn-Banach theorem in combination with reflexivity there exists
y € X such that L, (x)(y) = 0 forevery x € X and f(y) # 0. Then w(x, y) = 0 for every
x € X and so L,(y) = 0 which contradicts that L,, is injective. ]

Thus, a real Banach space X is symplectic if and only if X is reflexive and there exists
a1 X — X* isomorphism into such that «* = —a (where o™ : X** — X* is the adjoint of
o with the canonical identification). In this case w(x, y) = a(x)(y) is a symplectic form on
X. These results justify the following definition.

Definition 2.3 Let X be a real reflexive Banach space. An isomorphism « : X — X* is said
to be a symplectic isomorphism if «* = —a.

The basic examples of symplectic Banach spaces known so far are:

e Finite dimensional symplectic spaces are even dimensional.
Standard structure: If X is a real reflexive Banach space and

w((e,e), (f, f*) = f(e) —*(f)

then (X @ X*, w) is a symplectic space.

Infinite dimensional Hilbert spaces are symplectic.

e The Kalton-Peck twisted Hilbert spaces £,(¢) introduced in [19] are symplectic (it
follows from the proof of [19, Theorem 5.1] that £, (¢)* is isomorphic to £, (—¢) and the
definition of the isomorphism 7 on [19, Page 18]).

Only symplectic structures on Hilbert spaces admit a simple description.

Lemma 2.4 Let (H, (, )) be a real Hilbert space and w be a continuous bilinear form on 'H.
Then w is a symplectic form on 'H if and only if there exists an isomorphism o : H — H
with Hilbert-adjoint a* = —a such that w(x, y) = (a(x), y) forall x,y € H.

We pass to define the equality notion for symplectic forms.
Definition 2.5 Two symplectic Banach spaces (X1, w;) and (X3, w;) are equivalent if there
is an onto isomorphism 7" : X| — X» such that wo(Tx, Ty) = w1 (x, y). If w1, w> are two

symplectic structures on a real Banach space X we will write w; ~ w> to denote they are
equivalent.
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Hence the symplectic spaces (X1, 1) and (X2, w») are equivalent if and only if there
exists an isomorphism 7 : X; — X, such that L., = T*L,, T, where L,, is the respective
isomorphism of X; onto X7,i =0, 1.

X1;>X2

The following notions will also be useful:

Definition 2.6 Let (X, w) be a symplectic Banach space and let F' be a closed subspace of
X.

e The symplectic orthogonal (or symplectic annihilator) of F is the linear subspace F® =
{xeX :wkx,y)=0 forall y € F}.

F is symplectic if F # {0} and (F, w|rxF) is a symplectic Banach space.

F is isotropic if w(x, y) = O forevery x,y € F,ie., F C F®.

F is Lagrangian if it is isotropic and if X can be written as a topological direct sum
X = F & G for an isotropic subspace G of X.

The symplectic structure (X, ) is trivial if X contains a Lagrangian subspace.

Observe that for a closed subspace F' = (F®)”. By Zorn’s lemma every symplectic
structure admits a maximal isotropic subspace. Also, if (X, w) is trivial and X = F & G, for
closed isotropic subspaces F and G of X, then G is isomorphic to F* and the symplectic
space (X, w) is equivalent to the standard structure on F @ F* (see [17, page 99]).

Lemma 2.7 Let (X, w) be a real symplectic space. A closed subspace F of X is symplectic
ifandonly if X = F @ F®.

Proof Denote Lr = L), ,then L is injective if and only if ' N F = {0}. Suppose that
F is symplectic. For every x € X there exists f € F suchthat Lr(f) = L, (x)r. It follows
that x — f € F® and hence X = F & F®. Conversely, assume that X = F & F®. Given
¢ € F* letx € X such that ¢ = L, (x)|r. If we write x = f 4 g with f € F and g € F?,
then Lr(f) = ¢. We conclude that L is an isomorphism and hence F' is symplectic. O

From here it immediately follows:

Corollary 2.8 Let (X, w) be a real symplectic space. A closed subspace F of X is symplectic
ifand only if F® is symplectic. If a closed finite codimensional subspace F of X is symplectic
then the dimension of X/ F is even.

As an immediate consequence, no real symplectic structure extends from an hyperplane
to the whole space. Moreover

Lemma 2.9 Let (X, w) be a real symplectic space and let H be a closed hyperplane of X.
Then H” C H and dim(H®) = 1. Moreover, there exists a closed symplectic subspace
H' € H withdim(H/H') = 1.

Proof Let g € X™* with H = ker g. Since X is symplectic, there exists xg # 0 in X such that
L, (x9) = g.Foreveryh € H,wehave w(xg, h) = Ly,(x0)(h) = g(h) = 0.Hencexyo € H®.
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On the other hand, g(xg) = w(xp, x0) = 0, and therefore xo € H. Now for every x € H®,
we have ker g C ker L, (x). It follows that L,,(x) = AL, (xo) for some constant A € R. We
conclude that x = Axg and then dim(H®) = 1. For the moreover part, let X = H @ span{x;}.
The argument above implies that there exists a closed hyperplane H; of X containing x such
that H = {x1}®. Consider H' = H N Hy. It follows that X = H' & span{xo, x1} and since
(x0,x1) # 0 we have that {xp, x;}” = H’. We conclude that H' is symplectic by using
Lemma 2.7. |

3 About the symplectic structure of Z,

The only known “nontrivial" symplectic space is the Kalton—Peck space Z; [19]. The space
Z, can be presented either in its natural quasinorm as a twisted Hilbert space, in its natural
quasinorm as a derived space or in its natural norm as a Rochberg space. And there are other
possibilites. All those norms and quasinorms are of course equivalent. We define Z, as the
space £p Dxp lo = {(w, x) € Lo X €2 : w— KPx € £} where KP is the Kalton—Peck map
KPx(n) = x(n)log ”ﬁ"@' , for every n € N (with the convention 0 = 01log 0). The space Z»
endowed with the quasinorm ||(w, x)| = || — KPx|2 + ||x||2 is a quasi-Banach space, and
this quasinorm is equivalent to a norm [17]. The space Z; is a twisted Hilbert space in the
sense that there is an exact sequence

0 6—"s27,-% 50, 0

with inclusion j(y) = (y, 0) and quotient map Q(w, x) = x. The space Z; is isomorphic
to its dual (see also [4] for a detailed study of this question) but is not isomorphic to a
Hilbert space. Z, is a superreflexive Banach space (as any twisted Hilbert space) with a
basis (u,),en defined for each n € N by uz,—1 = (e,,0) and uz, = (0, e,), where (e,),
is the canonical basis of £, [19, Th. 4.10]. Z; does not admit unconditional basis [21]. It
however has an Unconditional Finite Dimensional Decomposition into the 2-dimensional
subspaces X, = span{(e,, 0), (0, e,)}. An operator T € £(Z,) is either strictly singular
(that is, not an isomorphism on any infinite dimensional subspace of Z,) or an isomorphism
on a complemented copy of Z,. An operator T € £(Z,) is strictly singular if and only if 7'
is strictly singular [19].

The most remarkable fact for our purposes is that Z, is isomorphic to its dual. It follows
from [5, Proposition 5.5] that Z, in its Rochberg norm is isometric to its dual. Also the
spaces £, @kp £2 and o @_kp £2 are isometric via any of the maps (x, y) — (—x, y) or
(x,y) = (x, —y), and in duality via the bilinear form [17]

(G, ), D) =, ¥ e + (3, X )ey.
More precisely, the bilinear antisymmetric form <-, ->> : Z» x Z, — R given by
e, ), (YN =, ¥, — (3, X )e,.

is such that D : Z, — Zj given by D(a)[b] = <la, b> is an isomorphism. Accordingly,
Z, is isomorphic to Z3 and

Proposition 3.1 Z, is a symplectic Banach space.

Any reflexive Banach space X that is isomorphic to its dual and to its square admits a
renorming (X, | - |) such that (X, |- |) and (X*, | - |*) are isometric: if t : X — X @&y X* is
an isomorphism, set |x| = ||tx||. The same occurs to Z5.
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Definition 3.2 The symplectic adjoint T+ : Zy — Z; of an operator T € £(Z>) is defined
assigning to each y € Z, the only vector Ty such that, for all x € Z;,

ATy, x> =<y, Tx>. (1)

Indeed, T exists since the mapx — <y, Tx > defines a continuous functional on Z,. By
Proposition 3.1, there exists an unique y’ € Z sothat<y’, x> = <y, Tx > forall x € Z;.
This defines a linear involution + : B(Z>) — B(Z;) such that T identifies with the usual
dual map T*. The map T is bounded whenever T is bounded since %II TI<ITHI <3IT],
which can be proved using that | D] < 3 and 1D~ < 1 (see [4]). Moreover, there is a
commutative diagram

Z,—2 7 2)

Z—2 7

where D : Z, — Z; is the isomorphism given in Proposition 3.1. Indeed, given x € Z;, one
has DT*x = < T x, 1> € Z5 and the other way around gives T*Dx = T*( < x, - > ) =
<x, T(-)> € ZZ, and both functionals coincide by (3.2). It follows that T+ = D~!T*D.
This duality was fully exploited by Kalton [17] and Kalton and Swanson [20].

3.1 Matrix representation for T+

Bounded operators 7 : X — X defined on reflexive Banach spaces with basis (e;);eN
admit a matrix representation (a;;) in the sense that T'(e¢;) = Z;’il ajje; in terms of such
basis. Indeed, the canonical duality between X and X* given by (e;, e*) = §;; yields a;; =
(T (e;), e%). Taking into account the identities (7 (e}), e}k.*) = (T*(e}), ej) =T*(ef)(ej) =
ef(Tej) = (e}, T(ej)) = (T (e)), ef) it is then clear that the matrix representation of 7* is
just the transpose of that of T'.

The symplectic form < -, - > of Z, described above defines the matrix (<u;, u; >>);;,
namely

0O 1 0 O
<up,u1 > <up,ury> <ui,uzd> 10 0 0
<up,u1 > <up,url> <up,u3zb> 0 0 0 1

D= <uz,ur > <uz,ux > <uz,uzl> ... | = 0O 0 —1 0 )

Note that the matrix —D corresponds precisely to the isomorphism D : Z, — Z3 when
represented by the bases (u,,), and (u}'),; so D! corresponds to the matrix D. Now assume
that 7" admits a matrix representation given by coefficients (;,;);, ;. Since the representation
of T* is just the transpose of T and TT = D~!T*D, it follows that the matrix representation
of T is given by the product
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0 1 0 0 - [N 2 7 | 0 -1 0 0
-1 0 0 0 - ap axy azx by 1 0 0 O
o o o0 1 - aiz ary asz a4 0O 0 0 -1
0O 0 -1 0 - a4 ar4 434 a44 0O 0 1 O

which gives that

ap —ap ap —axn
—az1 a1 —a4  az|

7t —| au —au au —axu
—ar3 a3 —a43 a3

A different matrix representation for an operator T € £(Z) is considered in [13] <§ )ﬂ;)

where «, B, v, 8 are linear maps RY — RN, The relationship between this 2 x 2 represen-
tation and the infinite matrix representation described above can be seen the following way:

the matrix <(; 5) corresponds to the representation of Z, by means of the 2-dimensional

decomposition given by X, = span{(e,, 0), (0, e,)}. Since the infinite matrix representation
is given by the basis (u,), defined by us,_1 = (e,, 0) and uy, = (0, e,), it follows that

a=ay-12j-1, 6=0a22j-1, B=0a-12; andy = ay 2j,

where, for instance, a; 1,21 represents the infinite matrix formed by the odd columns and
odd rows of the matrix (a;;);, ; representing T'.

It is easy to check now that if 7 = f; ’5 is a bounded operator on Z; then T+ =
* _ p@%
(—)/6* ozé ) The matrix (8 (I)) represents the bounded operator Z, 4 123 N Z> and

+
(8 (1)) = (8 _OI> . Consequently, (jQ)T(yQ) = (jQ)* = 0. Thus, jQ provides an
example of bounded operator T € £(Z5) such that the identity ||TVT|| = ||T|| | 7| fails.

4 Symplectic transformations on Z,

Definition 4.1 An operator T : Z, — Z, will be called a symplectic transformation if it
preserves the symplectic form, in the sense that

IS Tx), T(y)> =<x,y>, forallx,ye Z. 4)

An operator T is a symplectic transformation if and only if 77T = I (here I is the
identity): indeed, for all x, y € Z, we have

<1T+Tx,y l>—<x,y>:<(T+T—I)x,yl>:0,

and thus we deduce from Proposition 3.1 that (TTT — I)x = 0 for all x € Z,. The other
implication is clear. From this we obtain:
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Proposition 4.2 Bounded symplectic transformations on Z, have complemented range.

Unbounded symplectic transformations on Z, are possible: just set the linear map
L(en,0) = (en,0)and L(0, e,) = (ney, e,). Indeed, L preserves < -, - > by checking on the
basis elements, and it is unbounded since || L(ey, ;)| = |(n + 1)e, — KP(ep)|l2 + llenll2 =
n + 2, for every n € N. From now on we will only consider bounded symplectic transfor-
mations and refer to them simply as symplectic transformations. Let us show some natural
examples.

Definition 4.3 An operator 1 : £» — {» is said to be an operator on the scale if there is
p > 2 such that  also acts linear and boundedly 1 : £, — £, as wellas n : £y« — £p. It
will be called an isometric operator on the scale if both n : £, — £, and n : £+ — £, are
into isometries.

A result of Banach [1] establishes that U((xn)n) = (&nXx(n)), Wwhere m : N — Nis
a permutation and |e,| = 1 for all n € N, are the only examples of surjective isometric
operators on the scale. One of the forms of the Commutator Theorem, see [7, 11] for details,
n 0

0 77) defines a bounded operator on Z>;

is that if » is an operator on the scale then 7, = (
see also [13].
Proposition 4.4 Suppose that a : £y — £ is an operator acting on the scale and B € £({2).

Then the upper triangular operator is a symplectic transformation if and only if « is

o B
0«

an isometry on £y and o* B is selfadjoint.

Proof First note that for any bounded operator 8 € £(¢3), the operator <8 ’g) is bounded

on Z; because coincides with the composition Z; —Q> 12 —ﬁ> 1) EN Zy.Since o : £y — €y
acts on the scale, we have that

(6 8)=6a)+G o)

and both operators on the right side are bounded, hence the upper triangular operator is
bounded. Once that boundness is settled, note that

aﬁ+a/3_a* —B*\ (¢ B\ _[(afa o'f—fa
0 « 0 «/ \O0O o J\O «/ L O a*a '

We conclude that g g) is a symplectic transformation if and only if a*a = I (i.e. an

isometry on ¢p) and «*8 = B*a = («*B)*. |
Corollary 4.5 Let U € £({») be any isometry that acts on the scale and T € £({>) a

T
selfadjoint operator. Then (lO] UU ) is a symplectic transformation.

4.1 Polar decompositions

A specially remarkable instance occurs when one sets the polar decomposition 7 = UP =
U(T*T)'/2 of an operator T € £(£5).

@ Springer



On symplectic Banach spaces Page9of22 56

Proposition4.6 Let T € £(£») be an operator and T = UP = U(T*T)'/? its polar
. T . . .
decomposition. If U is an operator on the scale then (g U) is a symplectic transformation

on 7.

Proof By Proposition 4.4 we justhavetorecallthat U*U = [ and U*T = P is selfadjoint. O

4.2 Diagonal operators

Let 0 € {o. The diagonal operator o((x,,),,) = (opXx,), is an operator on the scale and

. . o0 . .
it therefore induces the operator 7, = ( 0 0) on Z;. The operator 7, is a symplectic

transformation if and only if

wo=( 0 G 9= 26 D=6 )

If o is a sequence of reals, the operator o is selfadjoint this means that 0,0, = 1 for all
n > 1. Thus, 7, is a symplectic transformation if and only if o € {—1, I}N.

4.3 Shift operators

The right-shift operator 7((x,)») = ((xn—1)x) is an isometric operator on the scale and
r 0
Or

adjoint £ = r* is the left-shift operator £((x,),) = ((xn+1),,), which is also an operator

therefore R = < ) € £(Zy) is an isometry on Zp with 2-codimensional range. The

on the scale and therefore L = (l; 2 € £(Zy). It follows from Proposition 4.4 that R is

a symplectic transformation (see also below), while L is not symplectic because it is not
injective. The comments at the end of the previous section imply that R* = L and thus
LR=R'R=1.

4.4 Block operators

Let u be a sequence (u,), of disjointly supported normalized blocks in £, that we can
understand as the operator u : £o — £ given by u(x) = > x,u,. In general u is not an

operator on the scale and 8 3 is not an operator in Z,. The block operator Ty, : Zy — Z»
is defined as Ty (e,, 0) = (u,,0) and T,(0,e,) = (KPuy,, u,), namely
u KPu
T, = <0 N ) , 5)

where KPu : £ — RY denotes the linear map defined by KPu(e,) = KP(u,).

The operators T, are symplectic transformations, and the proof for this can be followed
in detail in [4, Section 10.9: The Properties of Z, explained by itself]. We will prove the
general case in Sect. 6. The idea is that equation (4) is equivalent to Tj Ty = I or else to
D = T} DT, since Tt = D=1T*D (see the comment after diagram (2)) and this follows,
after a few cumbersome computations, from the equality
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<uj, inKP(ui)> = <KP(uj), Zx,-u,->.

The operator Ty, Tj therefore defines a projection onto 7},[Z>] and this shows that Ty, is an
into isometry (with respect to the usual quasi-norm) with complemented range. All these
results are from [17].

Observe that R can be regarded as a block operator with the choice of (¢4,,),eN = (€n+1)neN
since KPe, = 0.

4.5 Transvections

Throughout this section (X, w) will denote a symplectic Banach space, in particular Z,. The
symplectic group of (X, w) is the subgroup Sp(X, w) of GL(X) of all symplectic automor-
phisms:

Sp(X,w) ={T e GL(X): o(Tx,Ty) = w(x, y) forall x, y € X}.
We will denote by Sp(Z>) the symplectic group of Z, endowed with the symplectic form
of Prop. 3.1. Observe that Sp(Z>) is not a bounded subgroup. Indeed, if D, : {5 — £y isa
diagonal operator on ¢, given by some real a € ¢, then D, is selfadjoint and (é l?“) is an
invertible symplectic transformation with norm ||a||sc + 1.

Definition 4.7 Let . € K and u € X. The transvection associated to A and u is the linear
map 7, givenby 7, ;(x) = x + Aw(x, u)u, foreachx € X.

Recall that forasubset U C X,wedenoteby U” = {x € X: w(x,u) =0, forallu € U}
the symplectic annihilator of U. For any u € X, let us denote by u® the anihilator of {u}. By
duality of Lemma 2.9, the annihilator #® of a line defined by any u € X is an hyperplane
of X. It follows that a transvection 7, ; is the identity on the hyperplane #® and induces the
identity on the corresponding quotient X /u® (as 7, (x) —x € u® for each x € X).

Lemma 4.8 Transvections are symplectic transformations.

Proof. In the first place, transvections are linear due as the symplectic form w (-, -) is bilinear.
Given x € X, boundedness follows by
17 () lx < lxllx + (Al oG, w)lllullx
< (L IAHlol ul) Ix 1 x-
Now taking x, y € X we deduce that
@ (Ty 0 (x), Ty 1 (¥) = w(x + Ao (x, wu, y + 2o (y, u)u)

=wx,y)+ro(y, w)wx,u) — rolx, u)w(y, u)
=w(x,y). ]

u
from the definition of transvection, which shows that, given u € X, 7, = {7,,: » € K} is

a subgroup of Sp(X) and the map A € (K, 4+) — 7, ; defines an isomorphism of groups.

Moreover, observe that 7 37y, = Ty a+p and Tuy . = 7T, ,2; as immediately follows
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5 Rochberg spaces are symplectic

Consider the complex interpolation method applied to the scale (£, £1) (see the classical
[2]; or else [4]). It is well known that it provides the space (£oo, £1)g = £y-1 for0 < 0 < 1.
In particular, ({oo, £1)1/2 = £2. Let U be the strip {z € C : 0 < Nz < 1} on the complex
plane. Recall that the associated Calderdn space C to the scale (£, 1) is the space of
continuous functions f : U — £, which are bounded on U, analytic on U and satisfy the
boundary conditions that, f(ti) € € and f(1 4+ it) € £; foreveryt € R and || fll¢c =
sup{l| f(k +it)|| : t € R, k =0, 1} < oco. The Rochberg spaces [23] obtained at 1/2 are
defined as

R = (X1, ..., x1,x0) € % : x; = fD(1/2)/i!, forsome f €C, 0<i <n—1}.

These spaces can be considered as generalizations of £,. Indeed, R = ¢, and it was Kalton
who noticed that R® = Z, (see [6, 11] for additional information). To show that Rochberg
spaces are symplectic we need first to know that they are isomorphic to their duals in the
following form taken from [5].

Proposition 5.1 Consider for eachn > 1 the continuous bilinear map w, : R x R® — R
given by

Op((nts 2 X0), Ot d0) = Y (=1 (xi, )

i+j=n—1

The induced operator D,, : R — R given by D, (x)(y) = wy(x, y) is an isomorphism
onto.

That this duality makes Rochberg spaces symplectic for even n, as it occurs with Z, is
somehow unexpected. Surprisingly enough, odd Rochberg spaces are also symplectic, but not
in the same way as even Rochberg spaces. To see why, observe that in the Hilbert space case
we know that there is a correspondence between complex and symplectic structures: if w is
a symplectic form, then there is a complex structure J such that w (x, y) = (x, J(¥)). In this
way, a symplectic structure is obtained “twisting” the natural duality with a complex structure
and this approach generalizes to higher order odd Rochberg spaces; i.e., a complex structure
on "™ may be used to induce a perturbation on w, and define a symplectic structure.

Theorem 5.2 All Rochberg spaces are symplectic.

Proof Observe that w, is alternating if and only if n is even; so, the result holds for even n.

For n odd, consider a complex structure o on ¢ that is an operator on the scale; say,
o(x) = (—x2, x1, —X4, X3, . . .), so that the induced diagonal operator 7, is bounded on Z,.
The generalized form of the commutator theorem, see [5, 7], shows that the n x n matrix
diagonal operator still acts boundedly on the corresponding 937, We will continue calling
7, this diagonal operator. We define the bilinear map

@ (n—1s 2 %0)s On—t1s -2 0)) = On(Xn1 -+ X0)s To Yu—1+ - - - Y0))
= Y (=Di(x, o).

i+j=n—1
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This map is now alternating due to the fact that 0™ = —o. Indeed,

@ ((onts o X0), Ot o0 30)) = > (=D (xi,0y))

i+j=n—1

= Y (=DYo*xi.y))

i+j=n—1

= Y (D' (=Dioxi,y))

i+j=n—1

=D Y =Dy, ox)
i+j=n—1

== Y (=D (=D (yox)
jFi=n—1

=D Y (=Di(yj.ox)
i+j=n—1

= —wn (n—1+ -2 50)s (Kn—1. - .. X0)).
Boundedness follows from the boundness of w, and t,:
|@n (x, )| = |on(x, )| < K x| IToyll < Clix]l I¥]-

To obtain that (R, @,) is symplectic it suffices to show that the induced linear map
Lo : ™ — RM™ is an isomorphism onto. Assume that there exists x € R such that
Lg-(x)(y) = 0 for all y € R™. Thus L, (x)(t,y) = 0 for all y € |R™. Taking into
account that 7, is invertible in 8™, it follows that Ly, (x)(y) =0forally R so that
x = 0. Moreover, as 7, is an isomorphism, it is clear that @, has closed range because w,
has closed range. o

6 Block operators on Rochberg spaces are symplectic

A sequence u = (u,)peny of normalized blocks in ¢, induces a multiplication operator

u : €y — {, given by u(e,) = u, and, as we showed in Sect. 4.4, a block operator
8 Zulogu in Z,. The higher order generalizations of block operators were obtained in
[10, Theorem 7.2] as the operators
u 2ulogu 2ulog’u e (ﬁ%l)!ulog”_] u
0 u 2ulogu  2ulog”u .
Tun=10 0 u 2ulogu 2ulog®u
0 0 0 u 2ulogu
0 0 0 0 u

that act boundedly T, ,, : R — R We will shorten the name to Ty, when no confusion is
possible about which is n. Given T € £(R), recall that T+ always denotes the symplectic
adjoint of an operator T, namely w,(TVx,y) = w,(x,Ty). If T € LR =Dy then we
will denote T7 the symplectic adjoint with respect to @p,_1, namely @s,_1(T%x,y) =
wyn—1(x, Ty). We have:
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0 Al 72 -1
AOAOAO"'AS
0 AY Al A2

Lemmaé6.1 LetT =] 0 O Ag Aé A2_3 be an upper triangular operator on R™ .
0 41
0 0 0 A54,,
00 00 AS_I
AN _“2}*72 A3?3 ) (=D tAg
1k * k
N 0 An—2 _’%n—S An1—4 ’ 2
— * * *
e TH=| 0 0 Ay —AT, Az
0 0 0 A, —A,
0 0 0 0 A8*

o Ifnisodd T* = —T*1,.

Proof. The first part can be obtained by plain induction. The second part is simple: since
5n(xa Ty) = wn(x7 faTy) then

TP = (e, )T =TTt 8T (1,) = -TT1,. O
We prove now that block operators are symplectic.

Proposition 6.2 Let D, : R™ — R be the duality isomorphism D, (x)(y) = w,(x, y)
from Proposition 5.1. One has T D, T, = D, or, equivalently, w,(Tyx, Tyy) = w,(x, y).

Proof For integers i € N and 1 < k < n, let us denote by x; ; the vector of R having e;
at the k" position and zeroes in the other coordinates (that is, x; ¢ = (Xp—1, . .., Xo) Where
the only non-zero coordinate is x,,_x = e¢;). It is enough to prove that

n (T (xi k), Tu(xj,1)) = on(Xi &, Xj,0)- (6)
First, suppose that k + [ = n + 1. Then by definition
on (T (x; k), Tu(xj,l))

2k—l 21—1
= wy wilog Vuil, o ugy . 0), [ ——uitog "l w0
(k—1! G-’ I J

= (="M uj) = on (i g, x50

If k +1 < n + 1 then (6) cancels out as we are multiplying by zeroes. If k +/ > n 41
then w, (x; x, x;,;) = 0 and (6) becomes, after settingm =k +1 — (n + 1),

on (Tu(xi k), Tu(xj0))
1 m—1

= (=" u; LA M)+ (= 1)k 2o |uil g u |
o 1108 OB ML Ty 0

zm
4ot (_1)"*k+’"<wui log" |u;|, uj>

m—p

= (1" Z(—l)l’%ui log? i, ¢

muj lOgm_p |M]|>. (7)

p=0
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If i # j then all summands in (7) are null because (u;, # ;) = 0 and the result follows. If
i = j then (7) becomes

m m

n— m 2 n—k m - 2" (m
(=1)"*log™ |u;| Z(—l)pm = (=" " log" |u;| Z(—l)p%<>

p=0 p=0 P
| &
= (~1)"*log" u;| Z(—l)f’(’”)
m!
p=0 P

Now, the Binomial Theorem 0 = (1 —1)" = ZZ’:O (r,:') 1=k (—1)¥ cancels out all terms. O

We conclude this section with several technical lemmata of independent interest about
generalized block operators.

Lemma 6.3 The range Ty, , [R] is isomorphic to R and complemented in R,

Proof The proof follows the arguments of [8, 20]. There is a commutative diagram

0 Ru—1 R 14 0
Tu,n—ll lTu,n lTu.l
0 Riu—1 R, 12 0

By a general 3-space property (see [4]), since Ty,,1 = Ty is an isometry, T, , must be an into
isometry. Thus, 7y, , [93UD] s an isometric copy of R . This isometric copy is complemented
because of the identity (Ty ,)* DTy, = D, from Proposition 6.2. Thus, Ty, , D, ' (Ty.,)* Dy
is a projection of R onto the range of T, . i

We now extend the classical result about the behaviour of operators on Z, due to Kalton
[17, Lemma 6] to higher order Rochberg spaces.

Lemma 6.4 If T : R — R (n > 1) is not strictly singular then there exists o # 0 and
block operators Ty and Ty such that TT, — aTy is strictly singular.

Proof Let us recall from [6] that the canonical exact sequence

0 2 DA )AL Lt —y| 8)

has strictly singular quotient map. Therefore, there exists & # 0 and normalized block basic
sequences u = (u,), and v = (v,), in £; such that

T(u,,0,0,...,0) =a(v,,0,0,...,0) +w,, foreachn € N,
where Y, [|w, || < co. Now just take the block operators Ty,, T, induced by those sequences
and consider the following operator K : £, — R given by

o
K(x.0,....00= > (en.0.....00*((x.0,...,0)wy. foreach (x,0,....0) €ty ¢ R".
n=1

Since Y o2 lI(en, 0, ..., O*[[lwy |l = Doy llwnll < oo, we have that K is nuclear. If we
denote by K : R — M the natural nuclear extension to R, then K is compact and
TT, —aT, — K = 0 on the canonical copy of £, in R given by (8) and thus 7T, — o T,
must be strictly singular. O
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An important consequence of this perturbation result is:
Lemma6.5 Letn > 1andT € £ (ER(”)).

o IfT*T is strictly singular then T is strictly singular.
e Ifnis odd and T*T is strictly singular then T is strictly singular.

Proof LetT € £ (9%(”)) be a non-strictly singular operator. By the previous lemma, there
exists @ # 0 and block operators Ty, Ty such that TT,, = aT, — S with § strictly singular.
Therefore
TITYTTy = (TT)TT, = (T, — SHTy —S) =T Ty + 5 =a'T+ 5,
and therefore 7T is not strictly singular. If n is odd, we have
TETTT, = (TTW'TTy = @T? — (T — S) = ' T{Ty + S = ' T 1, T !
u u= u u= b v = vlo =—alytTy + S

by Proposition 6.1. This means that if 727 is strictly singular, then T;’ 75 Ty must be strictly
singular, but since 7, Ty is invertible, T, must be strictly singular, as well as Ty, which is a
contradiction since block operators are never strictly singular. i

7 Rochberg spaces do not contain Lagrangian subspaces

We now extend the Kalton—Swanson theorem [20] showing that the symplectic structures of
Rochberg spaces we have defined are not trivial.

Theorem 7.1 R (n > 1) has no Lagrangian subspace.

Proof Let T be a projection onto an infinite dimensional isotropic subspace. If n is even,
T+T = 0, so T must be strictly singular and thus every complemented isotropic subspace
must be finite dimensional. If n is odd, T*T = 0 and then T must be also strictly singular. 0O

Some of the authors of this paper conjecture that Rochberg spaces obtained from a reflexive
Banach space X such that X N X" is dense in both X and X and (X, Y*) 1/2 is isometric to
a Hilbert space are symplectic. Conditions to obtain (X, Y*) 172 = {2 are in [27] (see also
[11]). By [5], see also [24, Proposition 2.11], the diagram

0 o (RO)y* o 0
o
0 o R o 0

with T(x*, y*)(x, y) = (x*, y) + (y*, x) for all (x*, y*) € d(X}) and all (x, y) € dXy is
commutative, which shows that the corresponding R is symplectic. The assertion general-
izes to “even Rochberg spaces 8" are symplectic". Moreover, assume that both X and X*
have a common complex structure, i.e., an operator o bounded in both X and X *satisfying
that o2 = —1I. Then, reasoning as in Theorem 5.2, we deduce that also odd Rochberg spaces
R =D are symplectic. However, it seems difficult to prove that such symplectic structures
are non-trivial. If one wants to adapt the proof for the couple (£1, £) to the general case
one should prove that the corresponding block operators
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u QW@ QPw) ... QD
0 u QW) Q@ ®w)

0 0 u QW@ QP ®w)
0 0 u QM )
0o ... 0 0 u

where Q) are the corresponding n-differentials (see [23]) are symplectic operators. See also
[10] to determine how they can be calculated. In our Kalton—Peck case, Q"x = %x log" x
for normalized x. In general, it is perfectly possible (think about the case of weighted Hilbert
spaces [8]) that all iterated Rochberg spaces are actually Hilbert spaces and thus their sym-
plectic structures are trivial.

8 Almost symplectic structures

This section is motivated by the study [9] on complex structures on Z,. Let us recall that a
linear bounded operator J : X — X defined on a real Banach space is a complex structure if
J? = —I; and that a complex structure J on X yields a C-linear structure on X by declaring
(¢ +iB)x = ax+ BJ(x). The resulting complex space will be denoted X7 and itis a Banach
space equipped with the norm |||x||| = SUPgepo, 271 Il cOS Ox + sinfJ (x)]|.

The following result of Weinstein [28] shows that symplectic structures on real Hilbert
spaces are obtained from complex structures.

Lemma 8.1 Let H be a real Hilbert space. For every symplectic form w in H there exist a
complex structure J on 'H and an equivalent inner product (, )gr on 'H such that w(x, y) =
(x, Jy)R forevery x,y € H.

Consequently, all symplectic structures on a real Hilbert space are equivalent to the stan-
dard one. Let us prove that a complex structure on a real Hilbert space induces a symplectic
structure.

Lemma 8.2 Let H be a real Hilbert space and J be a complex structure on 'H. Then there exist
an equivalent inner product (, g on H such that w(x, y) = (x, Jy)r defines a symplectic
form w on 'H.

Proof Let J be a complex structure on H. Letus take R = I+ J*J. Then (x, y)r = (x, Ry)
defines an equivalent inner product on 7 for which J is an isometry and therefore a unitary
operator. The Hilbert-adjoint of J with respect to this inner product is J~! = —J. Then
o(x,y) = (x, Jy)r is symplectic on H. O

It is straightforward that a complex structure on a hyperplane of any Banach space cannot
be extended to a complex structure on the whole space. The same situation occurs for sym-
plectic structures (Corollary 2.8). It was shown in [9] that no complex structure on £, can be
extended to a complex structure on a hyperplane of Z, containing it. We now observe that
an analogous result holds for symplectic structures (Corollary 8.5).

Definition 8.3 Let X and Y be Banach spaces and j : ¥ — X be an isomorphism into. A

bilinear map 2 on X extends a bilinear map w on Y through j when Q(jx, jy) = w(x,y)
for every x, y € Y. Equivalently 2 extend w through j if the diagram is commutative
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Y—j>X

Lml lLQ (10)

yr ol xx

Essentially following [12, Prop. 3.1] we obtain

Proposition 8.4 Let X and Y be Banach spaces and j : Y — X be an isomorphism into.
If a symplectic structure w on Y can be extended to a bilinear form Q on X, then j(Y) is
complemented on X.

Proof Indeed, jL_'j*Lg would be a projection onto j[Y] for symplectic extensions. O
Since Z; does not contain complemented copies of ¢ [19, Corollary 6.7] we have

Corollary 8.5 No symplectic structure on £, can be extended to a bilinear form on a hyper-
plane H of Z; through any embedding j : ¢, — H.

‘We now observe that a symplectic structure on an hyperplane induces an almost symplectic
structure on the space in the following sense:

Definition 8.6 Let X be a real (complex, resp.) Banach space and let o : X — X* (o : X —
X", resp.) be an isomorphism. We say that « is almost symplectic if @ + o™ (o + @*, resp.)
is strictly singular. We will say that X admits an almost symplectic structure if there exists

an almost symplectic isomorphism X — X* (X — X", resp.).

Recall that for a given Banach space X and F a subspace of X the annihilator of F' is the
closed subspace of X* defined by F= = {f € X* : f(x) =0 forall x € F}.

Now, if B is a symplectic isomorphism on a hyperplane H of X and we identify H* =
X*/H L then we can consider the isomorphism extension @ : H @ [e] - H L @e)t given
by a(h + re) = B(h) + re*, for some e* € H* with e*(e) = 1. Quite clearly « + o* is a
rank one operator. We prove now the converse:

Proposition 8.7 Let X be a real or complex Banach space admitting an almost symplectic
structure. Then either X or its hyperplanes admit a symplectic structure. In particular, X is
reflexive.

Proof In the real case, consider &« : X — X* an almost symplectic isomorphism and let
s © X — X* be a strictly singular operator such that « + o™ = s. Then, denoting by
B = a—s/2,wehave B* = — B and that § is a Fredholm operator with index 0. By Fredholm
theory there exist closed subspaces Xo € X and Yy € X™* such that E = Xy @ ker 8 and
X* =Yy ® F, where ker 8 and F are finite dimensional subspaces with the same dimension
and such that the restriction y := B|x, : Xo — Yo is an isomorphism onto.

Observe that that Yy = (ker ﬂ)l. Indeed, let ¢ € Yy and x € ker B. Let x9 € X be
such that ¢ = B(xp), then ¢ (x) = B(x0)(x) = —B(x)(x0) = 0. Hence Yy  (ker ). The
equality holds since dim(X*/(ker 8)*) = dim(X*/Yp). Then we can assume that F = Xé‘.
Let us take {x1,...,x,} and {¢1, ..., ¢,} basis of ker § and X(J)-, respectively, such that
¢i(xj) = & forall 1 < i,j < n. Suppose now that n is even and consider the map
Y o ker — XOl defined by ¥ (x2k—1) = ¢k and ¥ (x2x) = —op—1 fork = 1,...,n/2.

It follows that the map I : X @ ker 8 — (ker ,B)J- fa>) XOl defined by the matrix (g 12)

is a symplectic isomorphism on X. When #n is odd, the previous construction gives us a
symplectic structure for an hyperplane of X. The proof for the complex case is completely
analogous. O
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A similar proof implies that if X is a Banach space (over Ror C) and o : X — X*
(@:X—>X, resp.) is an isomorphism such that & — o™ (o — @*, resp.) is strictly singular
then there exists an isomorphism 8 : X — X* (8 : X — X, resp.) such that g* = B
(E* = B, resp.) and such that § — « is strictly singular. In both the real and complex case,
we call such isomorphism 8 a Hermitian structure on X.

Proposition 8.8 Ler X be a reflexive Banach space over K (R or C) isomorphic to its dual
(dual conjugate when K = C) such that every operator T : X — X is of the form AI + S
for some & € K and S strictly singular. Then either X or its hyperplanes admit a symplectic
structure or X admits a Hermitian structure.

Proof For the real case, let & be an isomorphism onto the dual. Using the canonical identifi-
cation of (@) ~'a* : X*™ — X as an operator on X, we have by reflexivity that o* = Ao+
where s is strictly singular. It follows that @ = Aa* + s*, and then A2 = 1. If L = —1 we
have an almost symplectic structure. Then by the previous proposition X or its hyperplanes
admit symplectic structure, and if A = 1 we have a Hermitian structure.

In the complex case we may assume an isomorphism « of X onto X" thena* = A + s
and we get that |A| = 1. If A = ¢’ then by taking u = ¢/®~7)/2 we have

()" = e = Tha + 51 = —pa + 51,

for a strictly singular operator s1. Hence we obtain an almost symplectic structure on X. By
taking instead . = ¢’%/? we have an Hermitian structure on X. i

When such spaces or their hyperplanes admit a symplectic structure, then it cannot be
trivial, since it would rely on writing X = Y @ Y™ and a space with the (Al + S)-property
cannot have nontrivial complemented subspaces. It is an open question the existence of spaces
satisfying the hypothesis of Proposition 8.8.

Proposition 8.9 Let X be a reflexive real Banach space. Let « : X — X* be a symplectic
isomorphism and s : X — X* be a strictly singular operator. If @ + s is also a symplectic
isomorphism then o and o + s are equivalent.

Proof Recall that X denotes the usual complexification of a real Banach space X. If 7' : X —
Y is an operator then T denotes the respective induced operator from X to Y. Let us consider
the spectrum of a real operator 7 as the spectrum of its complexification, and denote it by
o (7). Now set S = a~'s, then S = @' is also strictly singular. Consider I' a rectangular
with vertical and horizontal edges, rectifiable, conjugation-invariant, simple closed curve,
contained in the open unit disk, and such that I N 0(3‘\) = (). Denote by U the bounded open
connected component of C\ ', and by V' the unbounded open domain of C\ T". Let P be the
spectral projection of S associated to o (S) N U. By a general argument (see [16, Prop. 10]),
Pi is induced by a real operator P on X. Let also O be the spectral projection associated to
o(S)NV.Then S = SP + S0.

The spectral radius of SP is strictly smaller than one. Then the series ), ., a, (SP)
converges to an operator R, where Y n>1 anz" converges to 2(—1 + (1 + 2)1/2) for every
|lz| < 1. Since the coefficients of the series are reals, then R is induced by a real operator
R =73",-,a,(SP)" on X which is strictly singular. It follows that

R+ -R*>=5P. an
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We also have that @R)* = —&R. Indeed, @(SP)")* = [GP)a “]"a* =
—GFPaYHY'a = —a@ 'GP))" = —a(SP)" forevery n € N, where we used that 3 = —5
and hence (s P)* = —5 P with the canonical identification. Therefore

P n) a(Pelr)=((1+12)7) a1+ %)
)¢ 2T 2 ¢ 2
1

=P*@+7%P. (12)

Let Xg = PX and consider 71 := I + %R. Since B := T{'aTi = o + s, where s is
strictly singular and 8* = —8 it follows from the proof of Proposition 8.7 that for any
closed subspace Z C X such that X = Z @ ker g the restriction gz : Z — (ker Bt is
symplectic. Now observe that 77 is Fredholm of index 0 and ker 77 € ker B. Then we can
write X = X & ker f where the restriction of 77 to X is an isomorphism onto its image.
We may assume by Lemma 2.9 that X1 € Xo and that y = Bjx, : X; — (ker B)tisa
symplectic isomorphism.

Let us denote by Q2 and w the symplectic forms associated to « 4 s and «, respectively.
Equation (12) implies that P*(T*aT;)P = P*(a + s)P. Then for every x,y € X we
have Q(x, y) = P*(e+s)P(x)(y) = B(x)(y) and therefore X is a symplectic subspace of
(X, 2). Analogously, T X is asymplectic subspace of (X, w). Hence by Corollary 2.8 we can
write X = X EBX?2 and X = 71 XD (T1X1)® where XlQ and (7T X1)® are finite dimensional
symplectic subspaces with the same dimension. Then there exists an isomorphism 7>
X? — (T1 X1)® suchthatw(Thx, Toy) = Q(x, y) forallx, y € X?.Hencetheisomorphism

T: X XlQ — T1X1 @ (T X1)® represented by the matrix (7(;1 79) satisfies T*aT =
2
oa+s.

We obtain now a result analogous to [16, Prop. 8] for symplectic structures on Hilbert
spaces. Recall that a bilinear map 7' : X x X — R on a Banach space is said to be compact
if its associated operator L1 : X — X™* is compact. First we need the following lemma.

Lemma 8.10 The spectrum of a symplectic isomorphism « : H — H on a real Hilbert space
‘H has only imaginary values.

Proof Let (7, {, )c) be the complexification of (H, {,)). It follows that @* = —a. Let A €
do (@). By [22, Corollary 3.1] there is anormalized sequence (x,,),, such that lim,,_, o0 (@ (x,;) —
Ax,) = 0. Since (@ — AI)* = —& — Al commutes with @ — AI then ||[(@ — AD)*(x)| =
[(@—A@)x]| forall x € H. Therefore 1im, s 00 —(X + A, = limy,_s oo (=0 (x,) — Axy,) =0
and thus 1(A) = 0. ]

Proposition 8.11 Let H be a real infinite-dimensional Hilbert space and w be a symplectic

structure on H. Then there do not exist bounded bilinear maps Q and k on X = R @ H with
Kk compact, Q2 an extension of @ and such that Q2 + « is symplectic on X.
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Proof Let J € £(H) be a complex structure given by Lemma 8.1 such that w(x,y) =
(Jx, y) for an equivalent inner product (, ) on H. Let X be equipped with the inner product
determined by ((a, x), (b, y))x = ab + (x, y), and let A be the operator on X defined by

the matrix ( . Suppose that there exists a compact operator K on X such that A + K

10
0J
is a symplectic isomorphism on X and consider the function from [0, 1] into 2(5(\ ) given by
T, = A+ uK. Asin the proof of [16, Prop. 8], denote by E (A, T},) the spectral projection
associated to every A € o(T,). Let n(n) = ZAEROG(TM) rk(E(A, T,)) and let Ip = {u €
[0, 1] : n(w) iseven}, I1 = {u € [0, 1] : n(u) is odd}.

0J
associated spectral projection of dimension 1, thus O € ;. On the other hand, by Lemma 8.10
we have that 77 does not have real eigenvalues and therefore 1 € Ij. Following essentially
the same arguments of [16, Prop. 8], we obtain that Iy and /; are open, and partition [0, 1].
Since they are non-empty, we get a contradiction. |

The operator Alis defined by the matrix <1 (»)~> , therefore has only one real eigenvalue, with

The spectral arguments of the proof of [16, Prop. 8] do not apply when we considering
symplectic isomorphisms on Banach spaces. We do not know whether Proposition 8.11 holds
for general Banach spaces.

9 Open problems

Question 9.1 Does every twisted Hilbert space admit a symplectic structure?

It is not even known if every twisted Hilbert space is isomorphic to its dual.
The spectral group of a symplectic Banach space (X, w) is the subgroup of operators 7'
in GL(X) such that o(Tx, Ty) = w(x, y) forevery x, y € E.

Question 9.2 Is the spectral group of the Kalton—Peck space Z» connected?

Given a complex structure J on a real Banach space X, the complex space X ~7 is called
the conjugate of X 7. Bourgain [3] and Kalton [18] (among others) constructed examples of
complex structures for which X/ and X~/ are not C-isomorphic. These results motivate the
following question.

Question 9.3 (Conjugate problem) Let @ be a symplectic structure on a real Banach space
X Isw~—-w?

If the symplectic structure w is trivial then it is easy to see that @ ~ —w. The nontrivial
symplectic structure » on the Kalton—Peck space induced by Proposition 3.1 is equivalent

. T . . ..
to —w, since (x, y) — (—x, y) is an isometry such that T*©T = —w. A similar argument
shows that the symplectic structure on Rochberg spaces )" defined by Theorem 5.2 is
equivalent to its "conjugate’.
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